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1. Introduction

Recent development [1] of the dual correspondence between gauge theories and string

theories has given us a powerful tool to investigate strongly coupled gauge theories like

Quantum Chromodynamics (QCD) or Technicolor, which are otherwise extremely difficult

to solve. According to the gauge/string duality the low energy QCD becomes a theory of

mesons in the large number of color (Nc) and large ’t Hooft coupling (λ ≡ g2
sNc) limit,

but in a warped five-dimensional spacetime. The theory, known as holographic QCD, is

nothing but a 5D flavor gauge theory in the warped background geometry, endowed with

a Chern-Simons term, necessary to realize the global anomalies of QCD [2, 3].

Being the theory of mesons in the large Nc limit, holographic QCD should admit

baryons as solition solutions, as conjectured by Skyrme long time ago for the nonlinear

sigma model [4]. Indeed, it was found that the baryons are realized as instanton solitons

in holographic QCD [5].1 The instanton picture of baryons reproduces the success of

skyrmions rather well but with much less parameters for the spectrum and the static

properties of baryons [7 – 10]. Unlike skyrmions, however, the instanton solitons are made

of not only pions but infinite towers of vector mesons, intertwined nontrivially, leading

to small size objects without any intrinsic core, which therefore realizes full vector meson

dominance for baryons [7, 10].

One of nice features of skyrmion is that monopole catalysis of baryon decay [11, 12] is

easily described in the skyrmion picture of baryons, which then sets up the practical basis

for the calculation of monopole catalysis [13]. The magnetic monopole provides a defect

on which the topological charge of skyrmions can unwind, allowing skyrmions to decay at

the rate of QCD scale without suppression by the monopole scale.

1There is an alternative realization of baryons through 5D holographic baryon fields [6].
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In this paper we describe how monopole catalysis of baryon decay realizes in holo-

graphic QCD. The magnetic monopole catalyzes baryon decay, since the 5D baryon num-

ber current, BM = (1/32π2)ǫMNPQRTrFNPFQR is not conserved in the presence of the

holographic magnetic monopole string by violating the Bianchi identity for the gauge fields.

Furthermore, we show that monopole catalysis can be naturally described in string theory

as the dissolution of D4 brane (instanton soliton) into D6 brane (monopole string), which

suggests that monopole catalysis of baryon decay should occur without any barrier and

hold even beyond the large Nc limit. The decay rate of baryons by monopole catalysis

is determined by the scale of instanton solitons. In section 2 we first briefly review the

monopole catalysis of skyrmion decay, studied by Callan and Witten [13], and then in sec-

tions 3 and 4 we describe how monopole catalysis is realized in holographic QCD. Finally

in section 5 we present the string theory realization of monopole catalysis of baryon decay.

Section 6 contains concluding remarks together with future directions.

2. Monopole catalysis of baryon decay

Monopoles can arise in grand unified theories (GUTs) as the unified gauge symmetry breaks

down to the Standard Model gauge group. Their typical size is about the unification scale,

which is nearly point-like compared to the usual scales of the Standard model physics,

especially QCD. Since electromagnetism is the only long-ranged interaction in the Standard

Model, a GUT monopole eventually looks like an electromagnetic Dirac monopole to low

energy observers. Near the core of the monopole, there are clouds of heavy GUT gauge fields

which can mediate various GUT interactions, among which are baryon number violating

processes. Despite its small size, the cross sections for these monopole-induced processes

are not suppressed by the unification scale, due to their origin being related to chiral

anomalies. Rather, the monopole center provides a baryon number violating vertex of unit

strength acting as a catalysis of baryon decay, and the actual cross section is governed by

low energy dynamics such as QCD.

The physics gets more interesting when the low energy dynamics such as QCD be-

comes strongly coupled and takes a completely different looking effective theory. Because

the monopole catalysis is not suppressed by any scales of the UV theory, its presence must

persist even in the low energy effective theory, and we need a non-trivial disguise of the

monopole-induced baryon decay as an interesting low energy phenomenon within the effec-

tive theory. As the structure of the monopole core given by the UV physics is not a concern

of the low energy effective theory, the Dirac monopole profile of the unbroken gauge group

should be sufficient for the low energy description of monopole catalysis. This indicates an

intricate theoretical consistency requirement for the physics induced by Dirac monopoles

in any low energy effective theory.

A consistent low energy effective theory of QCD is the chiral Lagrangian of SU(NF )L×

SU(NF )R, and the low energy baryons are effectively described by topological solitons,

called Skyrmions, in the large Nc limit. Assuming that the large Nc QCD can be embedded

in some GUT theory which contains monopoles capable of baryon number catalysis, the

above discussion leads to the expectation that an electromagnetic Dirac monopole should be

– 2 –



J
H
E
P
0
8
(
2
0
0
8
)
0
1
8

able to induce Skyrmion-baryon decay within the low energy chiral dynamics. At first sight,

this looks puzzling because the baryon number of the Skyrmions is purely topological and

there seems to be no way for the Skyrmions to decay within the framework of the effective

theory. This is the problem of monopole catalysis of Skyrmion decay analyzed by Callan

and Witten long ago [13].

The resolution of the puzzle is that the baryon number and its current must be modified

in the presence of a background electromagnetic field,2 to be gauge invariant and conserved

at the same time. This requirement determines the baryon number current uniquely [13].

More explicitly, the standard baryon number current of Skyrmions which is topologically

conserved is given by

Bµ =
1

24π2
ǫµναβTr

(

U−1∂νUU
−1∂αUU

−1∂βU
)

, (2.1)

where U is the SU(2) group field of the chiral Lagrangian3 which transforms as

U → gLUg
†
R , (2.2)

under the chiral symmetry SU(2)L × SU(2)R. Since the electromagnetic U(1)EM acts on

U by

U → eiQUe−iQ , Q =

(

2
3 0

0 −1
3

)

, (2.3)

the simplest way to make the baryon current gauge invariant would be to replace the

ordinary derivatives ∂U by the covariant derivatives DU = ∂U +AEM [Q,U ], where AEM

is the electromagnetic gauge potential.4 However, the resulting baryon current is no longer

conserved in general, and we need to add more gauge-invariant terms to make it conserved.

This has been worked out in ref. [13], and we quote the result

Bµ =
1

24π2
ǫµναβTr

(

U−1∂νUU
−1∂αUU

−1∂βU
)

−
1

24π2
ǫµναβ∂ν

[

3AEM
α Tr

(

Q(U−1∂βU + ∂βUU
−1)
)]

. (2.4)

It is clear that the final form of the modification does not affect the conservation of the

current, while it can also be checked that the result is U(1)EM gauge invariant.

However, the conservation of baryon number, ∂µB
µ = 0, is guaranteed only for a

smooth, well-defined background potential AEM . Since a Dirac monopole field is singu-

lar and doesn’t have a well-defined potential, its presence might invalidate the conserva-

tion of the above gauge invariant baryon number. Indeed, this is exactly what causes

Skyrmions to decay in the presence of a monopole. One might question that the topo-

logical Skyrmion number (2.1) can never be violated under a smooth time evolution, and

2In general, any background SU(NF )L ×SU(NF )R ×U(1)B gauge fields upon weakly gauging it requires

modification of the baryon number current.
3For simplicity, we will confine our discussion to the NF = 2 massless quarks
4We use the convention where the gauge potential is anti-hermitian, and the covariant derivative is

D = ∂ + A. To compare with ref. [13], simply replace A by −ieA.

– 3 –



J
H
E
P
0
8
(
2
0
0
8
)
0
1
8

an initial Skyrmion would never decay to topologically trivial meson states. However, a

caveat is that a Dirac monopole entails the Dirac-string on which AEM is singular, and we

are allowed to take singular gauge transformations to move this string from one direction

to another. Under these singular U(1)EM gauge transformations which are now allowed

in a Dirac monopole background, the topological Skyrmion number can actually change.

In other words, the Skyrmion number is not a well-defined gauge-invariant quantity in the

presence of a Dirac monopole, and a configuration with non-zero Skyrmion number can be

equivalently described by a topologically trivial configuration under a gauge transforma-

tion. What remains invariant under the gauge transformations is the new gauge-invariant

baryon number (2.4).

This gauge-invariant baryon number can be eaten up at the monopole center dynami-

cally, which is responsible for the baryon decay. Near the center of the monopole, only the

neutral component of the pion, π0, can take non-zero values, while charged pion excitations

would cause too much energy, since they have nonzero angular momentum proportional

to the magnetic charge of monopole. Writing U(t) = exp( 2i
Fπ
π0(t)σ3) near the center of a

Dirac monopole of unit strength

AEM = −
i

2
(1 − cos θ)dφ , (2.5)

and using ǫrθφt = −1√
g

= −1
r2 sin θ

in the polar coordinate, the radial flux of the baryon number

out of the monopole is readily calculated to be

Br =
∂tπ

0

4π2Fπr2
, (2.6)

whose integration gives the change of baryon number

dB

dt
=

1

πFπ
(∂tπ

0) . (2.7)

Therefore, the rate of change of π0 at the monopole center is proportional to disappearance

of the baryon charge from the effective theory. In the original GUT, this baryon number

violation should be accompanied by creation of leptons, whose detail should resort to some

unknown dynamics at the center of the monopole, so that the total fermion number is

conserved. In the low energy effective theory, this normally involves putting a relevant

boundary condition on the leptons at the monopole center, such that the change of baryon

number is compensated by the change of lepton number. In the following sections, we

will see that all the above features nicely fit into a simple description in the framework of

holographic QCD.

3. Holographic baryon number current

To be specific, we present our analysis in the model by Sakai and Sugimoto (SS) from Type

IIA string theory (See ref. [14 – 16] for its quark mass deformation). However, most of the

steps we perform are dictated by symmetry and don’t in fact depend on the details of the

model, and hence our analysis is applicable to any model of holographic QCD.

– 4 –



J
H
E
P
0
8
(
2
0
0
8
)
0
1
8

In the SS model, the world volume U(NF )L and U(NF )R gauge fields on D8 and D̄8

in UV region are holographically dual to the corresponding chiral symmetry in QCD. Its

spontaneous breaking to the diagonal U(NF )I is geometrically realized by adjoining D8

and D̄8 at the tip of the cigar geometry. Alternatively, we can view this as having a single

D8 brane whose two asymptotic boundaries towards UV region encode the chiral symmetry

U(NF )L and U(NF )R respectively. The latter view point is more practical in the analysis,

and we introduce a coordinate z on D8 such that z → ±∞ represent two UV boundaries.

We will call z the radial or the 5th direction. Assuming homogeneity along the internal

S4 fibration, the world volume theory on NF D8 branes is effectively a 5D U(NF ) gauge

theory in a non-trivial z dependent background. According to AdS/CFT correspondence,

the asymptotic values of the 5D gauge potential near the two boundaries, Aµ(x, z → ∞)

and Aµ(x, z → −∞),5 are non-dynamical background fields coupled to QCD U(NF )L
and U(NF )R currents respectively. Equivalently, they are precisely the background gauge

potential upon weakly gauging the chiral symmetry.

Note that the above prescription holds true in the gauge where Az is kept free (and

vanishes at z → ±∞), while it is often more convenient to work in the gauge where Az = 0.

After performing a suitable gauge transformation from the above to the Az = 0 gauge, the

boundary behavior of Aµ will be slightly different from the above. However, any gauge

invariant calculations are independent of the gauge choice.

The 5D gauge theory on D8 also contains a tower of normalizable (axial) vector meson

excitations in view of 4D observers. Especially, the Wilson line

U(xµ) = P exp

(

−

∫ +∞

−∞
dz Az(x

µ, z)

)

, (3.1)

is identified as the massless Nambu-Goldstone pion for the chiral symmetry breaking

U(NF )L × U(NF )R → U(NF )I ,
6 and it is precisely the group field entering the low en-

ergy QCD chiral Lagrangian. Upon expanding AM in terms of normalizable (axial) vector

mesons as well as the non-normalizable background fields previously mentioned,7 and per-

forming z-integration we obtain a 4D effective chiral Lagrangian of U(x) and excited mesons

coupled to the background gauge potential. The part that contains U(x) reproduces the

previously known gauged Skyrmion theory with the correct Wess-Zumino-Witten term.

Therefore, the 5D gauge field compactly summarizes the pions, the excited mesons, and

the background gauge potential of the chiral symmetry in a single unified framework.

As the 5D gauge theory on D8 branes includes the Skyrmion theory, there must exist

topological objects similar to Skyrmions that play a role of baryons. Indeed, the 5D

gauge theory has topological solitons whose field profile on the spatial (xµ, z) directions

taking that of instantons. We call them instanton-baryons not to be confused with real

5We use Greek indices for the Minkowki R1,3 directions, while the full 5D coordinates (xµ, z) will be

denoted by capital letters.
6Note that axial anomaly of U(1)A is negligible in the large Nc limit.
7The modes from Az, except the Wilson line (3.1), are eaten after all by massive spin 1 (axial) vector

mesons coming from Aµ. In this sense, the Az = 0 gauge is a kind of unitary gauge where only physical

degrees of freedom are present.
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instantons in Euclidean field theory. This also agrees with the baryonic objects coming

from S4-wrapped D4 branes in the string theory of this background, since these D4 branes

can dissolve into D8 branes exactly as instanton-solitons [17]. The topology of instanton-

baryons is counted by the instanton number

B =
1

32π2

∫

dzdx3ǫMNPQTr (FMNFPQ) =
1

8π2

∫

R4

Tr (F ∧ F ) , (3.2)

where M,N,P,Q spans only spatial dimensions and the epsilon tensor is defined in the flat

space. In our convention, F = dA+A∧A. Being topological, its conservation is guaranteed

in any smooth situations.

We can easily find the corresponding conserved current in 5D [5]. From the Bianchi

identity DF ≡ dF +A ∧ F − F ∧A = 0, we have

dTr (F ∧ F ) = Tr (DF ∧ F ) + Tr (DF ∧ F ) = 0 , (3.3)

and the current 1-form defined by jB = ∗5Tr (F ∧ F ) is conserved

d ∗5 jB = 0 . (3.4)

Note that this is independent of what metric we use in defining ∗5 since the conservation

is a consequence of the Bianchi identity. In fact, the results of the following discussions

will not be affected by metric at all, and for simplicity we will keep the flat 5D metric in

(xµ, z) coordinate whenever we need the metric as intermediate steps. In components (3.4)

is written as DM j
M
B = ∂M j

M
B = 0, where jMB = gMN jBN = ηMNjBN and DM is the metric

covariant derivative. This means that we can define a 4D conserved current Bµ by simply

integrating jµB along the z-direction,

Bµ ≡

∫ +∞

−∞
dz jµB , (3.5)

where the conservation is shown by

∂µB
µ =

∫ +∞

−∞
dz ∂µj

µ
B = −

∫ +∞

−∞
dz ∂5j

5
B = j5B(−∞) − j5B(+∞) = 0 , (3.6)

as the boundary term

j5B(±∞) ∼ ǫµναβTr (FµνFαβ) |z→±∞ (3.7)

is the chiral sphaleron density of the background gauge potential of the chiral symmetry,

and we assume that it vanishes for now. This is justified in our consideration of static

monopoles without electric fields which will be discussed in a moment. We will come back

to the implication of these boundary terms later. The explicit form of the 4D conserved

baryon current Bµ is

Bµ =

∫ +∞

−∞
dz jµB ∼

∫ +∞

−∞
dz ǫµναβ Tr (F ∧ F )ναβz = ηµν

[

∗4

∫

z

Tr (F ∧ F )

]

ν

. (3.8)
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The final form makes it clear that the end result is indeed metric-independent. By com-

paring with the normalized instanton number (3.2) as
∫

d3xB0, we can easily fix the nor-

malization to be

Bµ =
1

8π2

∫ +∞

−∞
dz ǫµναβ Tr (FναFβz) . (3.9)

Upon expanding AM in terms of the group field U(x) (as well as excited mesons) and

performing z-integration, we naturally expect that it reduces to the usual Skyrmion number

current in (2.1).

A crucial point is that the above baryon current (3.9) remains gauge invariant even in

the presence of background gauge potentials for the chiral symmetry, which are encoded

as non-normalizable modes of AM . Its conservation, relying on the Bianchi identity, is also

intact in any smooth situations up the boundary term in (3.7). However, this boundary

term cancels in (3.6) in the case of vector-like background field, that is, the fields coupled

to U(NF )I such that Aµ(+∞) = Aµ(−∞). The electromagnetism belongs to this case with

A(+∞) = A(−∞) = QAEM , Q =

(

2
3 0

0 −1
3

)

. (3.10)

Because these two constraints uniquely fix the baryon current (2.4) in the presence of

background electromagnetic potential, the above holographic baryon current must repro-

duce (2.4) as its lowest component involving U(x).

To check this, it is convenient to work in the Az = 0 gauge with an expansion [2]

Aµ(x, z) = A
ξ+
Lµ(x)ψ+(z) +A

ξ
−

Rµ(x)ψ−(z) + (excited modes) , (3.11)

where

A
ξ+
Lµ = ξ+(AL)µξ

−1
+ + ξ+∂µξ

−1
+ , A

ξ
−

Rµ = ξ−(AR)µξ
−1
− + ξ−∂µξ

−1
− . (3.12)

The group field U(x) is contained in the above by ξ−1
+ ξ− = U , and we denote the background

gauge potential by AL = A(+∞) and AR = A(−∞). There still remains a residual

gauge symmetry to fix, called Hidden Local Symmetry, which is nothing but the gauge

transformation at the deepest IR z = 0 which acts on the partial Wilson lines ξ± as

ξ±(x) → h(x)ξ±(x). For our purpose, we take the gauge ξ−1
+ = U and ξ− = 1, upon which

we have

Aµ =
[(

U−1QU
)

ψ+ +Qψ−
]

AEM
µ + ψ+U

−1∂µU + (excited modes) , (3.13)

where we have explicitly used the electromagnetic background potential (3.10). The details

of the zero mode wavefunctions ψ±(z) won’t be important later, except ψ+ + ψ− ≡ 1 and

ψ+(∞) = ψ−(−∞) = 1. From

Fνα =
((

U−1QU −Q
)

ψ+ +Q
)

FEM
να − ψ+(1 − ψ+)

[

U−1∂νU,U
−1∂αU

]

+ψ+(1 − ψ+)
(

U−1∂νU
(

Q− U−1QU
)

+
[

U−1, Q
]

∂νU
)

AEM
α − (ν ↔ α) ,

Fβz = − (∂zψ+)
((

U−1QU −Q
)

AEM
β + U−1∂βU

)

, (3.14)
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and integrating over z in (3.9), we can easily check that the result indeed agrees with

the previously known 4D result (2.4). Observe that the z-integration involves only the

following integrals

∫ +∞

−∞
dz (∂zψ+)(ψ+)n =

1

n+ 1
(ψ+)n+1

∣

∣

∣

+∞

−∞
=

1

n+ 1
, (3.15)

without regard to a detailed functional form of ψ+. This can be understood because the

final result is dictated by symmetry and it should be true universally for any holographic

model of QCD.

In the presence of a general chiral background potential, we naturally propose (3.9) to

be the right answer for the modified baryon current. With this granted, a violation of the

baryon number by the boundary term (3.7)

∂µB
µ ∼ ǫµναβTr (FµνFαβ)

∣

∣

∣

R
− ǫµναβTr (FµνFαβ)

∣

∣

∣

L
, (3.16)

implies that baryon number can be generated in an environment with non-zero chiral-

asymmetric sphaleron density. This can be achieved by sphalerons made of elecro-weak

gauge bosons, which are indeed known to induce baryon asymmetry via chiral anomaly.

Our result can be thought of as a manifestation of this physics in the low energy effective

theory.

For a reference, we obtain from (3.9) the baryon current in a general chiral background

potential AL and AR,

Bµ =
1

24π2
ǫµναβ Tr

(

U−1∂νUU
−1∂αUU

−1∂βU
)

−
1

8π2
ǫµναβTr∂ν

(

U−1ALα∂βU +ARαU
−1∂βU − U−1ALαUARβ

)

−
1

8π2
ǫµναβ Tr

(

∂νALαALβ +
2

3
ALνALαALβ − (L↔ R)

)

. (3.17)

This is an extension of (2.4), which we find via holographic QCD.

4. Holographic monopole catalysis of baryon decay

In this section, we re-analyze the monopole-induced baryon decay we discussed in section 2

in the framework of holographic QCD, and find that the physics becomes more transparent

in holographic QCD.

A 4D background electromagnetic Dirac monopole enters our holographic model as a

specific non-normalizable mode in the expansion of 5D gauge field AM . In the gauge where

we keep Az free, which is more convenient than the previous Az = 0 gauge for the present

purpose, the background potential appears in the expansion as

Aµ(x, z) =
1

2
(AL +AR)µ +

1

2
(AL −AR)µ ψ0(z) + (normalizable modes) , (4.1)

where ψ0(z) = 2
π

tan−1(z) with ψ0(+∞) = −ψ0(−∞) = 1. Az contains only normalizable

modes. For electromagnetism which is vector-like, AL = AR = QAEM , the second term

– 8 –
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is absent and we observe that a 4D monopole background would enter the 5D expansion

homogeneously along the z-direction. In fact, a 5D gauge theory doesn’t allow topological

monopoles, but instead can have string-like objects (monopole-string) whose 3-dimensional

transverse profiles resemble those of monopoles. Therefore, the natural holographic object

corresponding to a 4D monopole is a monopole-string extending along the radial direction.

Behaviors of normalizable modes, including the pions U(x), can be analyzed by studying

the 5D gauge field fluctuations around the monopole-string background.

A nice thing in this holographic set-up is that the violation of baryon number (3.9) in

the presence of a monopole-string has a simple explanation in terms of a violation of the

Bianchi identity due to the magnetic source. The basic reason behind this simplification is

that holographic QCD unifies dynamical degrees of freedom of the model, such as U(x), with

the background potential AEM in a single 5D gauge theory framework, so that their physics

should find its explanations within the 5D gauge theory. We should also point out that in

the monopole-string background, the normalizable modes in the above expansion (4.1) will

in general be excited by back-reactions, and the full field configuration is more complicated

than the Dirac monopole alone. However, the amount of violation of the Bianchi identity

doesn’t depend on these meson clouds due to its topological nature, and is localized at the

core of the monopole-string.

We write the 5D gauge field as

A = QAEM + Ã , (4.2)

where AEM is a unit monopole-string background homogeneous along z with AEM
z = 0,

and Ã encodes any smooth dynamics of normalizable modes including pions U(x), as well as

additional smooth background potential AL and AR coupled to the chiral currents. Being

a unit magnetic source, AEM is characterized by

−2πi =

∫

S2

FEM =

∫

S2

dAEM =

∫

B3

d2AEM , (4.3)

where in the last equality we use the Stokes theorem on the 3-ball B3 around the monopole

core. This gives us

d2AEM = −2πi δ3(~0) , (4.4)

where δ3(~0) is a delta 3-form localized in space ~x at the monopole center ~x = ~0. In

components δ3(~0) = δ(3)(~x) dx1 ∧ dx2 ∧ dx3. With this gadget, it is straightforward to find

the Bianchi identity violation in 5D,

DF ≡ dF +A ∧ F − F ∧A = Qd2AEM = −2πiQ δ3(~0) , (4.5)

so that Tr (F ∧ F ) is no longer closed,

dTr (F ∧ F ) = 2Tr (DF ∧ F ) = −4πiTr (QF ) ∧ δ3(~0) . (4.6)

In components this is equivalent to

1

4
ǫMNPQR∂MTr (FNPFQR) = 4πiδ(3)(~x)Tr (QFtz) , (4.7)
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which implies that

∂µ

(

ǫµναβTr (FναFβz)
)

= −
1

4
∂z

(

ǫµναβTr (FµνFαβ)
)

+ 4πiδ(3)(~x)Tr (QFtz) . (4.8)

This is precisely what we need to find the violation of baryon number (3.9),

∂µB
µ =

1

8π2

∫ +∞

−∞
dz ∂µ

(

ǫµναβTr (FναFβz)
)

(4.9)

=
1

32π2

(

ǫµναβTr (FµνFαβ)
∣

∣

∣

R
− ǫµναβTr (FµνFαβ)

∣

∣

∣

L

)

+
iδ(3)(~x)

2π

∫ +∞

−∞
dz Tr (QFtz) ,

where we will ignore the first term as we already discuss it in the previous section.

To study the monopole-induced second term, let us go back to the Az = 0 gauge and

expand Aµ(x, z) more precisely,

Aµ =
[(

U−1(QAEM
µ +ALµ)U

)

ψ+ + (QAEM
µ +ARµ)ψ−

]

+ ψ+U
−1∂µU +

∑

k≥1

B(k)
µ ψk ,

(4.10)

including now the complete spectrum of excited (axial) vector mesons in the expansion.

Since AEM
t = 0, and Ftz = −∂zAt in our gauge, the z-integral is readily performed to give

∂µB
µ = −

iδ(3)(~x)

2π
Tr (QAt)

∣

∣

∣

+∞

−∞

= −
iδ(3)(~x)

2π

[

Tr
(

QU−1∂tU
)

+ Tr
(

QU−1ALtU
)

− Tr (QARt)
]

. (4.11)

This is the main result in this section. Note that there is no contribution from excited

(axial) vector mesons because their wavefunctions ψk(z) vanish sufficiently fast near the

boundaries. It is easy to see that the first term precisely reproduces to the 4D result (2.7).

Writing U(x) = exp( 2i
Fπ
π0(x)σ3) as before, we have

∂µB
µ = −

iδ(3)(~x)

2π
Tr
(

Qσ3
) 2i(∂tπ

0)

Fπ
=

(∂tπ
0)

πFπ
δ(3)(~x) , (4.12)

whose ~x-space integration is nothing but (2.7).

It is also interesting to speculate the implication of the second and the third terms.

They seem to indicate that in the presence of a chiral asymmetric chemical potential,

monopoles can create/annihilate baryon number. It would be interesting to understand

this better.

5. String theory realization

There is a nice stringy set-up realizing the physics of the previous sections in terms of

D- branes in the Sakai-Sugimoto model. Let us parameterize the cigar-shaped part of the

gravity background by a radial coordinate U ≥ UKK and an angle τ ∼ τ + 2πM−1
KK [2].

Details of the parameters UKK and MKK are not relevant in our discussion. Our NF

probe D8 branes are spanning a line {τ = 0} ∪ {τ = πM−1
KK}, U ≥ UKK in the cigar part.
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They also wrap the internal S4 fibration and span the Minkowski space R1,3. We then

consider a D6 brane which wraps the internal S4 fibration and spans a half of the cigar

0 ≤ τ ≤ πM−1
KK , U ≥ UKK , ending on one of the NF D8 branes. It is point-like in the

spatial ~x and static along the time.

Ignoring S4 and U directions since they are common to the D8 and D6 branes, the

system is similar to a D1 brane ending perpendicularly on one of NF D3 branes. The

end point of D1 on D3 looks like a monopole source in view of D3 world volume gauge

field. Because only one end of the D1 (D6) brane is on the D3 (D8) brane while the

other end extends to infinity, the resulting monopole configuration on the D3 (D8) brane

world volume is an Abelian Dirac monopole with infinite energy in the spatial ~x directions.

Including the radial direction U in the 5D D8 brane world volume (we ignore S4), or the

z direction in the previous sections, what we have is precisely a 5D holographic, Dirac

monopole-string in the 5D gauge theory on the D8 branes. Its U(1) monopole charge

direction depends on which D8 brane the D6 brane ends, and we simply call it the charge

matrix Q. For an example of NF = 2 with the D6 brane ending on the first D8 brane, we

have

Q =

(

1 0

0 0

)

. (5.1)

As the monopole-string is homogeneous along U (or z), it represents a vector-like back-

ground gauge potential of the chiral symmetry (or AL = AR = QADirac) with a monopole

charge Q in holographic QCD. Therefore, the physics of monopole catalysis of baryon decay

that we study in the previous sections must apply to this stringy setting.

Indeed, we can easily identify the string theory phenomenon corresponding to the

baryon decay in the presence of a D6 monopole-string. 5D instanton-baryons on the D8

branes can be thought of as S4-wrapped D4 branes dissolved into the D8 branes. But,

these S4-wrapped D4 branes can also dissolve into our D6 brane, because they are similar

to a D0/D2 system when we ignore the common S4 directions. Therefore, D4-baryons can

be captured by the D6 monopole-string and disappear from the D8 world volume. This is

the string theory correspondent to the monopole catalysis of baryon decay.

We define the baryon number of a single S4-wrapped D4 brane to be one, as it also

has unit instanton number on the D8 branes. The dissolved D4-baryon number into our

D6 monopole-string is measured by the 2-form field strength F (2) = dAD6 of the D6 world

volume gauge potential on the half cigar that theD6 world volume spans, similar to D0/D2

system,

(∆B)D6 =
i

2π

∫

(U,τ)
F (2) = −

i

2π

∫ +∞

−∞
dz AD6

z , (5.2)

where the normalization can be fixed by that a unit (−2πi) flux represents a single dissolved

D4-brane, and we use the Stokes theorem in the last equality since the boundary of the

D6 half cigar is precisely the line along z at the D6/D8 intersection. Note that in ~x space,

this is precisely the position of the monopole-string core. As the D6 brane ends on one of

the D8 branes, the D6 world volume gauge potential is identical to the corresponding D8

world volume gauge potential at the D6/D8 intersection. Therefore, the above AD6
z can
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be equally interpreted as the Az at the monopole-string core on the D8 brane on which

the D6 brane ends,

Az(t,~0) = QAD6
z (t) , (5.3)

where we take the monopole position at the origin ~x = ~0, and Q represents the charge

matrix of D6 ending on the D8 brane, as given before. Using Tr(Q2) = 1, we have

(∆B)D6 = −
i

2π

∫ +∞

−∞
dzTr (QAz)

∣

∣

∣

~x=~0
, (5.4)

whose time derivative must be equal to the rate of disappearance of the baryon number

from the D8 branes,

dB

dt
= −

d

dt
(∆B)D6 = −

i

2π

d

dt
Tr

(

−Q

∫ +∞

−∞
dz Az

)

. (5.5)

Noting that the integral inside the trace is precisely the Wilson line corresponding to the

pions,

−

∫ +∞

−∞
dz Az =

2i

Fπ
π0(~0)σ3 , (5.6)

we finally have
dB

dt
=

1

πFπ
Tr
(

Qσ3
) (

∂tπ
0
)

. (5.7)

This is precisely what we have in the previous sections.

6. Conclusion

Fermion number is often not conserved in background fields which modify the spectrum

of fermions [18]. One tantalizing such phenomenon is the monopole catalysis of baryon

decay, where baryons disappear (or appear) near the magnetic monopole. Since monopole

catalysis of baryon decay may have a significant effect in monopole search and proton

decay experiment, both of which are consequences of unified gauge theories, it is desirable

to understand it more clearly. We have investigated monopole catalysis in the context of

the gauge/string duality and showed how it is realized in holographic QCD and also in

string theory. In doing so we have demonstrated that the gauge/string duality is indeed

a powerful tool to study strong interactions, and found that the baryon number violation

under the magnetic monopole or by the electroweak sphaleron can be formulated into a

single equation in holographic QCD.

There are several phenomenological implications of our study. One of them is the

generation of baryons in the presence of magnetic monopole by external chiral chemical

potentials, as shown in eq. (4.11), which might be more effective in generating baryon asym-

metry at lower temperature where the sphalerons are suppressed. This mechanism might

be relevant in early universe or heavy ion collision but we leave it for future investigation.

– 12 –



J
H
E
P
0
8
(
2
0
0
8
)
0
1
8

Acknowledgments

This work is supported in part by the Korea Research Foundation Grant funded by

the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2007-314-

C00052)(D. K. H.), by KOSEF Basic Research Program with the grant No. R01-2006-000-

10912-0 (D. K. H. and C. P.), by the KOSEF SRC Program through CQUeST at Sogang

University (K. M. L.), KRF Grants No. KRF-2005-070-C00030 (K. M. L.), and the KRF

National Scholar program (K. M. L.). H.U.Y. thanks Koji Hashimoto, Takayuki Hirayama

and Feng-Li Lin for discussions.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200].

[2] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor.

Phys. 113 (2005) 843 [hep-th/0412141]; More on a holographic dual of QCD, Prog. Theor.

Phys. 114 (2006) 1083 [hep-th/0507073].

[3] J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons,

Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128];

L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl.

Phys. B 721 (2005) 79 [hep-ph/0501218].

[4] T.H.R. Skyrme, A Nonlinear field theory, Proc. Roy. Soc. Lond. A 260 (1961) 127; A unified

field theory of mesons and baryons, Nucl. Phys. 31 (1962) 556.

[5] D.T. Son and M.A. Stephanov, QCD and dimensional deconstruction, Phys. Rev. D 69

(2004) 065020 [hep-ph/0304182].

[6] G.F. de Teramond and S.J. Brodsky, The hadronic spectrum of a holographic dual of QCD,

Phys. Rev. Lett. 94 (2005) 201601 [hep-th/0501022];

D.K. Hong, T. Inami and H.-U. Yee, Baryons in AdS/QCD, Phys. Lett. B 646 (2007) 165

[hep-ph/0609270];

D.K. Hong, H.-C. Kim, S. Siwach and H.-U. Yee, The electric dipole moment of the nucleons

in holographic QCD, JHEP 11 (2007) 036 [arXiv:0709.0314];

Y. Kim, C.H. Lee and H.U. Yee, Holographic nuclear matter in AdS/QCD, Phys. Rev. D 77

(2008) 085030 [arXiv:0707.2637].

[7] D.K. Hong, M. Rho, H.-U. Yee and P. Yi, Chiral dynamics of baryons from string theory,

Phys. Rev. D 76 (2007) 061901 [hep-th/0701276]; Dynamics of baryons from string theory

and vector dominance, JHEP 09 (2007) 063 [arXiv:0705.2632].

[8] H. Hata, T. Sakai, S. Sugimoto and S. Yamato, Baryons from instantons in holographic

QCD, hep-th/0701280.

[9] K. Nawa, H. Suganuma and T. Kojo, Baryons in holographic QCD, Phys. Rev. D 75 (2007)

086003 [hep-th/0612187]; Brane-induced skyrmions: baryons in holographic QCD, Prog.

Theor. Phys. Suppl. 168 (2007) 231 [hep-th/0701007].

[10] D.K. Hong, M. Rho, H.-U. Yee and P. Yi, Nucleon form factors and hidden symmetry in

holographic QCD, Phys. Rev. D 77 (2008) 014030 [arXiv:0710.4615].

– 13 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2C38%2C1113
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C113%2C843
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C113%2C843
http://arxiv.org/abs/hep-th/0412141
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C114%2C1083
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C114%2C1083
http://arxiv.org/abs/hep-th/0507073
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C95%2C261602
http://arxiv.org/abs/hep-ph/0501128
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB721%2C79
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB721%2C79
http://arxiv.org/abs/hep-ph/0501218
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRSLA%2CA260%2C127
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2C31%2C556
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C065020
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C065020
http://arxiv.org/abs/hep-ph/0304182
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C94%2C201601
http://arxiv.org/abs/hep-th/0501022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB646%2C165
http://arxiv.org/abs/hep-ph/0609270
http://jhep.sissa.it/stdsearch?paper=11%282007%29036
http://arxiv.org/abs/0709.0314
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C085030
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C085030
http://arxiv.org/abs/0707.2637
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C061901
http://arxiv.org/abs/hep-th/0701276
http://jhep.sissa.it/stdsearch?paper=09%282007%29063
http://arxiv.org/abs/0705.2632
http://arxiv.org/abs/hep-th/0701280
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C086003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C086003
http://arxiv.org/abs/hep-th/0612187
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPSA%2C168%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPSA%2C168%2C231
http://arxiv.org/abs/hep-th/0701007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C014030
http://arxiv.org/abs/0710.4615


J
H
E
P
0
8
(
2
0
0
8
)
0
1
8

[11] V.A. Rubakov, Superheavy magnetic monopoles and proton decay, JETP Lett. 33 (1981) 644

[Pisma Zh. Eksp. Teor. Fiz. 33 (1981) 658];

V.A. Rubakov, Adler-Bell-Jackiw anomaly and fermion number breaking in the presence of a

magnetic monopole, Nucl. Phys. B 203 (1982) 311.

[12] C.G. Callan Jr., Monopole catalysis of baryon decay, Nucl. Phys. B 212 (1983) 391.

[13] C.G. Callan Jr. and E. Witten, Monopole catalysis of skyrmion decay, Nucl. Phys. B 239

(1984) 161.

[14] O. Bergman, S. Seki and J. Sonnenschein, Quark mass and condensate in HQCD, JHEP 12

(2007) 037 [arXiv:0708.2839];

A. Dhar and P. Nag, Sakai-Sugimoto model, tachyon condensation and chiral symmetry

breaking, JHEP 01 (2008) 055 [arXiv:0708.3233].

[15] R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string tachyon

condensation, Nucl. Phys. B 787 (2007) 98 [hep-th/0702155].

[16] O. Aharony and D. Kutasov, Holographic duals of long open strings, arXiv:0803.3547;

K. Hashimoto, T. Hirayama, F.-L. Lin and H.-U. Yee, Quark mass deformation of

holographic massless QCD, JHEP 07 (2008) 089 [arXiv:0803.4192].

[17] M.R. Douglas, Branes within branes, hep-th/9512077.

[18] See, for a review, chapters 14–17 in V.A. Rubakov, Classical theory of gauge fields, Princeton

University Press, Princeton U.S.A. (2002), pg. 444.

– 14 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JTPLA%2C33%2C644
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZFPRA%2C33%2C658
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB203%2C311
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB212%2C391
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB239%2C161
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB239%2C161
http://jhep.sissa.it/stdsearch?paper=12%282007%29037
http://jhep.sissa.it/stdsearch?paper=12%282007%29037
http://arxiv.org/abs/0708.2839
http://jhep.sissa.it/stdsearch?paper=01%282008%29055
http://arxiv.org/abs/0708.3233
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB787%2C98
http://arxiv.org/abs/hep-th/0702155
http://arxiv.org/abs/0803.3547
http://jhep.sissa.it/stdsearch?paper=07%282008%29089
http://arxiv.org/abs/0803.4192
http://arxiv.org/abs/hep-th/9512077

